
Journal of Geometry and Physics 57 (2007) 657–664
www.elsevier.com/locate/jgp

Homogeneous Finsler spaces of negative curvatureI

Shaoqiang Deng∗, Zixin Hou

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, PR China

Received 26 August 2005; received in revised form 28 April 2006; accepted 25 May 2006
Available online 11 July 2006

Abstract

We prove that a homogeneous Finsler space with non-positive flag curvature and strictly negative Ricci scalar is a simply
connected manifold.
c© 2006 Elsevier B.V. All rights reserved.
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Introduction

It is important in Riemann–Finsler geometry to study the relationship between curvature and topology. The
Cartan–Hadamard Theorem (cf. [2]) asserts that for a forward geodesically complete connected Finsler space of
non-positive flag curvature, the exponential mapping is a C1 covering projection at every point. This means that the
universal covering manifold of this space is C1 diffeomorphic to Euclidean space. In particular, if this Finsler space
is simply connected, then it is C1 diffeomorphic to Euclidean space. A natural problem is to ask what kind of Finsler
spaces of non-positive flag curvature are necessarily simply connected.

In the Riemannian case, there are many excellent works related to this problem. According to Cartan’s theory
of the symmetric Riemannian manifold [8], a globally symmetric Riemannian space of negative curvature is simply
connected. This result was generalized by S. Kobayashi to prove that a homogeneous Riemannian manifold of non-
positive sectional curvature and negative definite Ricci tensor is simply connected [9]. Since then, many people
have considered the problem of classification of homogeneous Riemannian manifolds of negative curvature (see,
for example, [7,13]).

The purpose of this paper is to prove the following

Main Theorem. Let (M, F) be a connected homogeneous Finsler space of non-positive flag curvature. If the Ricci
scalar is everywhere strictly negative, then M is simply connected.
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We remark that the Finsler metrics under consideration by us need not be reversible. A Finsler space is called
homogeneous if the group of isometries (cf. [4]) acts transitively on the underlying manifold. A homogeneous Finsler
space is necessarily (forward and backward) complete. This fact can be proved similarly as in the Riemannian case.

Compared to Kobayashi’s proof in the Riemannian case, ours is much more complicated. This is understandable
and to be expected. For example, a geodesic in a Finsler space need not be constant speed; the distance function in a
Finsler space is in general not symmetric. These facts sometimes cause much difficulty in the Finslerian setting (see
the proof of Lemma 3.2 below).

The arrangement of the paper is as follows. In Section 1, we recall some fundamental notions in Finsler geometry
such as Chern connection, flag curvature, Ricci scalar. In Section 2, we study Killing vector fields on Finsler manifolds.
Some results of this section are needed in the proof of the main theorem. Finally, in Section 3, we complete the proof
of the main result.

1. Flag curvature and Ricci scalar

In this section we will recall some basic definitions and notations needed in this paper. In particular, we will
introduce the Chern connection and the notions of covariant derivatives, flag curvature, Ricci scalar etc.

Let (M, F) be a Finsler space and (x1, x2, . . . , xn) be a local coordinate system on an open subset U of M . Then
∂

∂x1 , . . . ,
∂
∂xn form a basis for the tangent space at any point in U . For y ∈ Tx (M), x ∈ U , write y = y j ∂

∂x j . Then

(x1, x2, . . . , xn, y1, y2, . . . , yn) is a (standard) coordinate system on T U . Using the coefficients gi j and Ci jk of the
fundamental form and the Cartan tensor (cf. [2] or [3]), we define

C i
jk = gisCs jk,

where (gi j ) is the inverse matrix of (gi j ). The formal Christoffel symbols of the second kind are

γ i
jk = gis 1

2

(
∂gs j

∂xk −
∂g jk

∂x s +
∂gks

∂x j

)
.

They are functions on T U − {0}. We can also define some other quantities on T U − {0} by

N i
j (x, y) := γ i

jk yk
− C i

jkγ
k

rs yr ys,

where y = yi ∂
∂x i ∈ Tx (M)− {0}.

The slit tangent bundle TM − {0} is a fibre bundle over the manifold M with the natural projection π . Since TM is
a vector bundle over M , we have a pull-back bundle π∗TM over TM − {0}. The bundle π∗TM admits a unique linear
connection, called the Chern connection, which is torsion free and almost g-compatible [1,2]. The coefficients of the
connection in the standard coordinate system are

Γ l
jk = γ l

jk − gli
(

Ai js
N s

k

F
− A jks

N s
i

F
+ Akis

N s
j

F

)
.

Let ωi
j = Γ i

jkdxk . To define the flag curvature, we need some differential forms on the manifold TM − {0}. Let

δyi
= dyi

+ N i
j dx j .

The curvature 2-forms of the Chern connection are

Ω i
j = dωi

j − ωk
j ∧ ωi

k .

Since Ω i
j are 2-forms on the manifold TM − {0}, they can be expanded as

Ω i
j =

1
2

R j
i
kldxk

∧ dx l
+ Pj

i
kl dxk

∧
δyl

F
+

1
2

Q j
i
kl
δyk

F
∧
δyl

F
.

(it turns out that Q j
i
kl = 0).
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Let σ(t) be a smooth regular curve in M , with velocity field T . Let W (t) = W i (t) ∂
∂x i be a vector field along σ ;

define a vector field along σ by[
dW i

dt
+ W j T k(Γ i

jk)(σ,T )

]
∂

∂x i
|σ(t)

.

This is called DT W with reference vector T . We can also define another vector field by[
dW i

dt
+ W j T k(Γ i

jk)(σ,W )

]
∂

∂x i
|σ(t)

,

which is called DT W with reference vector W . Moreover, define

R(W, T )T := (T j (R j
i
kl)(σ,T )T

l)W k ∂

∂x i .

If σ(t) is a geodesic and DT DT W (with reference vector T ) is equal to −R(W, T )T , we call W a Jacobi field along
σ(t).

Now we can define the notion of flag curvature. A flag on M at x ∈ M is a pair (P, Y ), where P is a plane in the
tangent space Tx M and Y is a non-zero vector in P . The flag curvature of the flag (P, Y ) is defined to be

K (P, Y ) :=
gY (R(U, Y )Y,U )

gY (Y, Y )gY (U,U )− [gY (Y,U )]2 ,

where U = U i ∂
∂x i is any non-zero vector in P such that P = span{Y,U }. It can be shown that the quantity is

independent of the selection of U [2]. The Ricci scalar is defined as follows: Let l =
Y

F(Y ) (the distinguished section).
Then select n − 1 vectors in Tx (M), say V1, V2, . . . , Vn−1, such that l, V1, V2, . . . , Vn−1 form an orthonormal basis
of Tx (M) with respect to the inner product gY (·, ·). Let Pi = span(Y, Vi ), i = 1, 2, . . . , n − 1. Then the Ricci scalar
at Y is defined to be

Ric(Y ) =

n−1∑
i=1

K (Pi , Y ).

It can be shown that Ric(Y ) is equal to the trace of the endomorphism U → R(U, Y )Y of the vector space Tx (M) [3].

2. Killing vector fields on Finsler spaces

In this section, we study Killing vector fields on Finsler spaces. Some results will be useful in proving the main
theorem. Let (M, F) be a Finsler space, where F is positively homogeneous of degree one (but perhaps not absolutely
homogeneous). An isometry of (M, F) is a diffeomorphism σ of M such that F(dσ(Y )) = F(Y ), ∀Y ∈ TM. It is
proved in [4] that a mapping φ of M onto itself is an isometry if and only if φ is distance preserving, i.e., for any pair
of points x, y ∈ M , we have d(φ(x), φ(y)) = d(x, y). A vector field X on M is called a Killing vector field if any
local one-parameter transformation group ϕt of M generated by X consists of local isometries of M .

In the following we will give a geometric description of Killing vector fields, using Chern’s orthonormal frame
bundle. Let us first recall the construction of Chern’s orthonormal frame bundle of a Finsler space (see [11] for
the details). Let p ∈ M . A Chern’s orthonormal frame at p is a frame (i.e., a basis of the linear space Tp(M))
{X0, X1, . . . , Xn−1} on Tp(M) such that

(i) F(X0) = 1;
(ii) The vectors X0, X1, . . . , Xn−1 form an orthonormal basis of Tp(M) with respect to the inner product gX0 , where

g is the fundamental form of F .

The set of all Chern’s orthonormal frames is denoted by OF (M) and is called Chern’s orthonormal frame bundle
of (M, F). OF (M) is a subbundle of the linear frame bundle L(M) but in general not a principle subbundle of L(M).

The following proposition is a result of [11].

Proposition 1.1. A diffeomorphism f : M → M is an isometry of (M, F) if and only if the induced diffeomorphism
f̂ of f on L(M) keeps Chern’s orthonormal frame bundle, i.e., f̂ (OF (M)) ⊂ OF (M).
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Now we prove

Proposition 1.2. A vector field X on a Finsler space (M, F) is a Killing vector field if and only if the natural lift X̂
of X to L(M) is tangent to Chern’s orthonormal frame bundle OF (M) at every point of OF (M).

Proof. Recall that the natural lift X̂ can be obtained in the following way ([10], page 229): for any point x ∈ M , let
ϕt be a local one-parameter group of local transformations generated by X in a neighborhood U of x . For each t , ϕt
induces a transformation ϕ̂t of π−1(U ) onto π−1(ϕt (U )) in a natural manner, where π : L(M) → M is the natural
projection. The local one-parameter transformation groups {ϕ̂t } of L(M) obtained in this way induce a vector field on
L(M), which is just X̂ . If X is a Killing vector field, then ϕt are all local isometries of (M, F). By Proposition 1.1, ϕ̂t
maps OF (M) onto OF (M). Hence X̂ is tangent to OF (M) at any point of OF (M). On the other hand, if X̂ is tangent
to OF (M) at every point of OF (M). Then for any u ∈ OF (M), the curve ϕ̂t (u), as an integral curve through u with
vector field X̂ , must be contained in OF (M). Thus ϕ̂t (OF (M)) ⊂ OF (M). By Proposition 1.1, ϕt are isometries of
(M, F). Hence X is a Killing vector field. �

The proposition implies an important fact that the set of all Killing vector fields of (M, F) forms a Lie algebra. In
fact, if X1, X2 are Killing vector fields, then the corresponding natural lifts to L(M), X̂1, X̂2, are tangent to OF (M)
at every point of OF (M). Since OF (M) is a submanifold of L(M), [X̂1, X̂2] is tangent to OF (M) at every point of
OF (M). It is obvious that [X̂1, X̂2] is the natural lift of [X1, X2]. Therefore [X1, X2] is also a Killing vector field.
This proves our assertion. Denote the Lie algebra formed by all Killing vector fields by k(M, F) (or simply k(M)). A
natural question is that of determining the dimension of k(M, F). In particular, is this Lie algebra of finite dimension?
We will give a partial answer to this question in the following. First recall a result of [4] which asserts that the group
of isometries of (M, F), denoted by I (M, F) (or simply I (M)), is a Lie transformation group of M . We denote the
Lie algebra of this group by i(M, F) (or i(M)).

Theorem 1.3. The Lie algebra i(M, F) is isomorphic with the subalgebra of k(M, F) consisting of complete Killing
vector fields. In particular, if M is compact, then we have k(M, F) ' i(M, F).

Proof. If X ∈ i(M, F), then exp t x is a one-parameter group of isometric transformations of (M, F), where exp is the
exponential mapping of the Lie group I (M, F). Therefore it induces a Killing vector field on M which is complete.
On the other hand, if Y is a complete Killing vector field on M , then it generates a global one-parameter group of
isometric transformation of (M, F). Therefore the first assertion follows. If M is compact, then every vector field on
M is complete. Therefore the second assertion follows. �

Corollary 1.4. If (M, F) is a n-dimensional compact Finsler space, then dim k(M, F) ≤
1
2 n(n + 1). Furthermore, if

dim k(M, F) > 1
2 n(n − 1)+ 1, then (M, F) is Riemannian of constant curvature.

Proof. Since the first assertion holds if F is Riemannian, we only need to prove the second one. If dim k(M, F) >
1
2 n(n − 1) + 1, then by Theorem 1.3, dim i(M, F) > 1

2 n(n − 1) + 1. Hence dim I (M, F) > 1
2 n(n − 1) + 1. Now

the assertion follows from a theorem of Wang [12] which asserts that if an n-dimensional Finsler space admits a Lie
group of isometries of dimension > 1

2 n(n − 1)+ 1, then it is a Riemannian space of constant curvature. �

It is interesting to consider whether a conclusion similar to Corollary 1.4 holds if M is non-compact. In general,
this would be a difficult problem because we do not have a linear connection as in the Riemannian case.

The following results will be useful in the proof of the main result.

Proposition 1.5. Let (M, F) be a Finsler space and σ(t), a ≤ t ≤ b, be a geodesic. Let X be a Killing vector field.
Then the restriction of X to σ is a Jacobi field along σ .

Proof. For any t ∈ [a, b], we can find a neighborhood Ut of σ(t) and a positive number εt such that X generates a
local one-parameter transformation group of M which is defined on [−εt , εt ]×Ut . Since the set C = {σ(t)|a ≤ t ≤ b}

is compact, we can find a finite number of such open sets Ut whose union covers C . Therefore, we can find a positive
number ε such that the local one-parameter group generated by X is defined on [−ε, ε] × V , where V is an open
subset of M containing C . More precisely, we have a mapping ψs of [−ε, ε]× V into M which satisfies the following
conditions:
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(1) For each s ∈ [−ε, ε], ψt : p → ψt (p) is a diffeomorphism of V onto the open set ψs(U ) of M ;
(2) If s1, s2, s1 + s2 ∈ [−ε, ε], and if p, ψs(p) ∈ ψs(V ), then

ψs1+s2(p) = ψs1(ψs2(p)).

The induced vector field of ψs on V is equal to the restriction of X . Therefore ψs are local isometries.
Now we define a smooth variation of σ by

σ(t, s) = ψs(σ (t)), a ≤ t ≤ b, −ε < s < ε.

Then all the t-curves are geodesics. This can be seen from the following observation. Note that σ is locally minimizing,
since it is a geodesic [2]. Therefore for any fixed s ∈ (−ε, ε), ψs being a local isometry, the curve ψs(t), a ≤ t ≤ b,
is locally minimizing. Thus ψs(t), a ≤ t ≤ b, is a geodesic [2]. This proves our assertion. Now by the results of [2]
(page 130), the variation vector field of this variation, which is just the restriction of X to σ , is a Jacobi field. �

We also need a result about Killing vector fields on homogeneous Finsler spaces. Let M and N be Finsler spaces
and p : N → M a locally isometric covering projection (cf. [2] for the fundamental properties of covering projections
between Finsler spaces). Let G be a connected Lie group of isometries on M which acts transitively on M , g = Lie
G. Each X ∈ g generates a one-parameter group of isometries of M , and hence can be viewed as a Killing vector field
on M . Let X∗ be the lift of X to N (by the projection p). The set of all such X∗ forms a Lie algebra, denoted by g∗.
Since p is a locally isometric covering projection, we easily see that each X∗ is a complete Killing vector field on N .
Thus g∗ is a Lie subalgebra of i(N ). Let G∗ be the (unique) connected Lie subgroup of I (N ) corresponding to g∗.
Then we have

Lemma 1.6. G∗ acts transitively on N.

Proof. The Riemannian case of this result was proved by Wolf in [14] (see also [9]). For the general case, we recall
a result in our previous paper [5], which asserts that if a coset space G1/H1 of a Lie group G1 admits a G1-invariant
Finsler metric, then it also admits a G1-invariant Riemannian metric. Now the Lie group G acts transitively and
isometrically on M , so M can be written as G/H , where H is the isotropic subgroup of G at some point. Moreover,
the metric on M is invariant under G. Therefore we can find a Riemannian metric g on M which is G-invariant. This
means that each X ∈ g can also viewed as a Killing vector field on M with respect to g. Let g∗

= p∗g; then g∗ is a
Riemannian metric on N and p : (N , g∗) → (M, g) is a locally isometric covering projection. By Wolf’s result, G∗

acts transitively on N . This completes the proof of the lemma. �

3. Proof of the main theorem

Before the proof, we give an example of non-Riemannian homogeneous Finsler space with non-positive flag
curvature and strictly negative Ricci scalar.

Example. Consider the Riemannian symmetric pair (G, K ) = (SL(n,R), SO(n))(n ≥ 3); the canonical
decomposition of the Lie algebra g = Lie G is

g = k + p,

where k = Lie K consists of all the skew-symmetric matrices in g (=sl(n,R)) and p consists of all the symmetric
matrices in g. Now on p we construct a non-Euclidean Minkowski norm F0 via

F0(X) =

√
Tr(X2)+

√
Tr(X4) =

√√√√√ n∑
i=1

µi (X)2 +

√√√√ n∑
i=1

µi (X)4, X ∈ p,

where µi (X), 1 ≤ i ≤ n, are all the eigenvalues of X . It is easy to check that F0 is invariant under the adjoint action
Ad(K ) of K . Therefore we can define a G-invariant Finsler metric F on G/K which is equal to F0 at the origin if we
identify p with the tangent space of G/K at the origin [5].

It is a formidable task to compute directly the flag curvature and Ricci scalar of (G/K , F). But we have a simple
way to prove that it has non-positive flag curvature and to get the formula of the Ricci scalar. Note that G/K admits
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an invariant Riemannian metric g such that (G/K , g) is a Riemannian symmetric space which is irreducible of non-
compact type. Hence the holonomy group H of g at the origin p0 (= eK ) is equal to Ad(K ). Therefore F0 is invariant
under H . Furthermore, the geodesics emanating from p0 are exp t X · p0, X ∈ p and the parallel translate of Y ∈ p
along exp t X · p0 is just (d exp t X)p0(Y ) ([8], page 208). In particular, F is invariant under the parallel translation
along the geodesics of g emanating from the origin. Since g is complete, every point of G/K can be connected to
the origin using a geodesic. Now F0 is invariant under the holonomy group H of the Riemannian metric g at p0,
by Proposition 4.2.2 of [3], F0 can be extended to a Finsler metric F̄ on G/K by parallel translations (of g) such
that F̄ is affinely equivalent to g. Then by Proposition 4.3.3 of [3], F̄ is a Berwald metric (and it is easily seen that
the connection of F̄ coincides with that of g). Note that F̄ and F coincide at p0 and they are both invariant under
the parallel translation of g along the geodesics emanating from the origin p0. Since every point can be connected
to p0 by a geodesic, we see that F̄ and F coincide everywhere. In particular, F is a Berwald metric with the same
linear connection of g. Therefore (G/K , F) is a globally symmetric Berwald space of non-compact type and, by
Theorem 4.2 of [6], we see that F has non-positive flag curvature. On the other hand, by the formula of the curvature
tensor of Riemannian symmetric spaces ([8], page 215) we obtain

R(X, Y )Z = −[[X, Y ], Z ], X, Y, Z ∈ p,

where R is defined as in Section 1 (for the Finsler metric F). Therefore the Ricci scalar is

Ric(Y ) = Tr(−(ad(Y ))2|p), Y ∈ p, Y 6= 0.

A direct computation shows that

Ric(Y ) = −nTr(Y 2).

Since Y is a symmetric matrix, we see that Ric(Y ) < 0, ∀Y ∈ p, Y 6= 0. Since (G/K , F) is homogeneous, the
conclusions hold at any point of G/K .

Now we turn to the proof of the main theorem. It is just a careful and technical modification of Kobayashi’s
argument in [9]. We first need to prove two lemmas. Similarly as in the Riemannian case, we call an isometry of a
Finsler space a Clifford translation if the distance between a point and its image is the same for every point.

Lemma 3.1. Let N and M be Finsler spaces and p : N → M a locally isometric covering projection. If M is
homogeneous, then any homeomorphism φ of N onto itself satisfying p ◦ φ = p is a Clifford translation of N .

Proof. Since a distance-preserving mapping of M onto itself is necessarily an isometry [4], we only need to prove
that for any two points y, y′

∈ N ,

d(y′, φ(y′)) = d(y, φ(y′)),

where d is the distance function of N . Let G, G∗ be as in Lemma 1.6. Then G∗ is transitive on N . Hence there exists a
ψ ∈ G∗ such that y′

= ψ(y). Since p ◦ φ = p, φ induces the identity mapping of M . Hence φ∗ X∗
= X∗, ∀X∗

∈ g∗.
Therefore, in the Lie group G∗, we have

exp(φ∗(t X∗)) = exp t X∗, ∀t ∈ R.

Hence

φ−1 exp(t X∗)φ = exp t X∗, ∀t ∈ R.

From this we conclude that φ commutes with every element of the form exp t X∗, t ∈ R, X∗
∈ g∗. Since G∗ is

connected, it is generated by exp U , where U is a neighborhood of the origin in g∗. Therefore φ commutes with each
element of G∗. In particular, we have φ ◦ ψ = ψ ◦ φ. Now

d(y′, φ(y′)) = d(ψ(y), φ(ψ(y)))

= d(ψ(y), ψ(φ(y)))

= d(y, φ(y)).

Thus φ is a Clifford translation. �
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Lemma 3.2. Let M, N and φ be as in Lemma 3.1. Given y0 ∈ N, let y1 = φ(y0) and γ ∗(t), 0 ≤ t ≤ L, be a unit
speed minimizing geodesic from y0 to y1. Set γ (t) = p(γ ∗(t)). Then γ (t) is a unit speed smooth closed geodesic.

Proof. Since p is a local isometry and γ ∗ is minimizing, γ is locally minimizing. Therefore γ is a geodesic [2] and
it is obviously unit speed. Hence we only need to prove that γ (t) is smooth at γ (0) = γ (L). Suppose that this is not
true. Let ε > 0 be so small that the forward metric ball B+

yi
(ε), i = 1, 2, in N is diffeomorphic (by the mapping p) to

the forward metric ball B+

γ (0)(ε) in M (see [2] for the notation). Let δ > 0 be so small that both γ (L − δ) and γ (δ)

are contained in B+

γ (0)(ε). Then there exists a curve σ in B+

γ (0)(ε) from γ (L − δ) to γ (δ) with length strictly less than
the length of γ from γ (L − δ) to γ (δ). Thus (note that p is a local isometry)

l(σ ) < l(γ (t)|[L−δ,δ])

≤ l(γ (t)[L−δ,L])+ l(γ (t)|[0,δ])

= δ + δ = 2δ.

Let σ ∗ be the curve in B+
y1
(ε) such that p(σ ∗) = σ and y∗ be the end point of σ ∗. Then y∗

= φ(γ ∗(δ)). Now by the
triangular inequality of the distance function in Finsler spaces [2], we have

d(γ ∗(δ), y∗) ≤ d(γ ∗(δ), γ ∗(L − δ))+ d(γ ∗(L − δ), y∗).

Since γ ∗ is minimizing, we have

d(γ ∗(δ), γ ∗(L − δ)) = L − 2δ.

On the other hand,

d(γ ∗(L − δ), y∗) ≤ l(σ ∗) = l(σ ) < 2δ.

Hence

d(γ ∗(δ), φ(γ ∗(δ))) = d(γ ∗(δ), y∗)

< 2L = d(y0, y1)

= d(y0, φ(y0)).

Which is a contradiction with Lemma 3.1. �

Proof of the main Theorem. Suppose that M is not simply connected; let N be the universal covering manifold of
M and let p : N → M be the projection. Endow N with the Finsler metric F∗ defined by

F∗(y) = F(dp(y)), y ∈ T N .

Then p : N → M is a locally isometric covering projection. Since M is not simply connected, p is not
a diffeomorphism. This means that there exists a non-trivial (i.e., not equal to the identity transformation)
homeomorphism φ of N such that p ◦ φ = p. By Lemmas 3.1 and 3.2, we can find a closed smooth unit speed
geodesic on M , say γ (t), 0 ≤ t ≤ L , where L > 0. Let T be the tangent vector field of γ and V be any Killing vector
field on M . Denote Tt = T |γ (t). Define a non-negative function f (t), −∞ < t < ∞, as follows:

f (t) = gTt (V, V ), for 0 ≤ t ≤ L ,

and then extend it to a periodic function of period L . Note that since γ (t) is unit speed, Tt is everywhere non-zero.
Thus f (t) is smooth on (0, L) (cf. [2]). By Lemma 3.2, f (t) is smooth for all t .

Let

V ′
= DT V, V ′′

= DT V ′,

where the covariant derivatives are taken with reference vector T . By Proposition 1.5, V is a Jacobi field along γ , i.e.,
V ′′

= −R(V, T )T . Therefore we have ([2], page 136)

f ′(t) = 2gTt (V, V ′),

f ′′(t) = 2gTt (V
′, V ′)− 2gTt (R(V, T )T, V ).
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Since (M, F) has non-positive flag curvature, we have gTt (R(V, T )T, V ) ≤ 0,∀t . Thus f ′′(t) ≥ 0. Since f is a
periodic smooth function, this implies that f (t) is a constant function. Thus f ′′(t) = 0. Therefore gTt (V

′, V ′) = 0
and gTt (R(V, T )T, V ) = 0, for any t .

Now M is a homogeneous Finsler space. Therefore we can write M = G/H , where G is a connected Lie group
of isometries which is transitive on M and H is the isotropic subgroup of G at γ (0). As we mentioned before, there
exists a G-invariant Riemannian metric on G/H . In particular, G/H is a reductive homogeneous manifold. Hence
there exits a subspace m of g satisfying Ad(h)(m) ⊂ m, h ∈ H such that

g = h + m (direct sum of subspaces).

There is a canonical way to identify m with the tangent space TeH (G/H) = Tγ (0)(M). For any X ∈ m, the one-
parameter subgroup exp t X induces a Killing vector field on M = G/H which is equal to X at γ (0) = eH . Hence
gT0(R(X, T )T, X) = 0, ∀X ∈ m. But this is a contradiction with the assumption that Ric(T0) > 0. The contradiction
comes from the assumption that M is not simply connected. �
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